Regularity Results for Quasilinear Degenerate Elliptic Obstacle Problems in Carnot Groups
نویسندگان
چکیده
Let {X1, . . . , Xm} be a basis of the space of horizontal vector fields on the Carnot group G = (R , ◦)(m < N). We establish regularity results for solutions to the following quasilinear degenerate elliptic obstacle problem ∫ Ω 〈〈AXu,Xu〉 p−2 2 AXu,X(v − u)〉dx ≥ ∫ Ω B(x, u,Xu)(v − u)dx
منابع مشابه
Fefferman–poincare Inequality and Regularity for Quasilinear Subelliptic Equations
This talk is a survey on some recent results concerning local regularity for weak solutions to some quasilinear degenerate elliptic equations. This topic is a very classical one in the theory of PDE and we start by recalling contributions given by many authors. Early results go back to the outstanding papers by De Giorgi [12], Stampacchia [29], Ladyzhenskaia and Uraltzeva [18] between the end o...
متن کاملHypoellipticity for Linear Degenerate Elliptic Systems in Carnot Groups and Applications
We prove that if u is a weak solution to a constant coefficient system (with strong ellipticity assumed along the horizontal direction) in a Carnot group (no restriction on the step), then u is actually smooth. We then use this result to develop blow-up analysis to prove a partial regularity result for weak solutions of certain non-linear systems.
متن کاملCompactness Methods for Hölder Estimates of Certain Degenerate Elliptic Equations
In this paper we obtain the interior C regularity of the quasilinear elliptic equations of divergence form. Our basic tools are the elementary local L estimates and weak Harnack inequality for second-order linear elliptic equations, and the compactness method.
متن کاملA Remark On The Global Lipschitz Regularity Of Solutions To Inner Obstacle Problems Involving Degenerate Functionals Of p-Growth
We extend some recent results of Jagodziński, Olek and Szczepaniak [JOS] on the Lipschitz character of solutions to inner obstacle problems associated to a uniformly elliptic operator to the case of nonlinear, degenerate operators. In a recent paper Jagodziński, Olek and Szczepaniak [JOS] investigated the Lipschitz regularity of solutions to so–called inner obstacle problems extending earlier w...
متن کاملKrylov and Safonov Estimates for Degenerate Quasilinear Elliptic PDEs
We here establish an a priori Hölder estimate of Krylov and Safonov type for the viscosity solutions of a degenerate quasilinear elliptic PDE of non-divergence form. The diffusion matrix may degenerate when the norm of the gradient of the solution is small: the exhibited Hölder exponent and Hölder constant only depend on the growth of the source term and on the bounds of the spectrum of the dif...
متن کامل